
Magnus Glantz, Senior Solution Architect
Red Hat

GitHub/freenode: mglantz
http://github.com/mglantz/presentations

ANSIBLE BEST PRACTICES: THE ESSENTIALS

http://github.com/mglantz/presentations

Ansible

Modules

InventoryUsers

Public / Private
Cloud CMDB

 ANSIBLE AUTOMATION

Hosts

Networking

Playbooks

Projects

Inventory

Public / Private
Cloud CMDB

Modules

HOW DOES IT WORK?

Projects

Playbooks

3

THE ANSIBLE WAY

4

Principal 1 - COMPLEXITY KILLS PRODUCTIVITY

We need to automate

No problem. I’m Phil. I’ll
have this automated in a bit.

Heey… Do you know what
^(?:(?:(?:0?[13578]|1[02])(\/|-|\.)31)\1|(?:(?:0?[
13-9]|1[0-2])(\/|-|\.)(?:29|30)\2))(?:(?:1[6-9]|[2-
9]\d)?\d{2})$|^(?:0?2(\/|-|\.)29\3(?:(?:(?:1[6-9]|[
2-9]\d)?(?:0[48]|[2468][048]|[13579][26])|(?:(?:
16|[2468][048]|[3579][26])00))))$|^(?:(?:0?[1-9
])|(?:1[0-2]))(\/|-|\.)(?:0?[1-9]|1\d|2[0-8])\4(?:(?:
1[6-9]|[2-9]\d)?\d{2})$
...does?

Now 5 years
later

Phil wrote that, good luck, he got killed
in the great dog-regexp war of 2019.

5

Principal 2 - OPTIMIZE FOR READABILITY

6

Ansible is a desired state engine by design. If you're
trying to "write code" in your plays and roles, you're
setting yourself up for failure. Our YAML-based
playbooks were never meant to be for programming.

Principal 3 - THINK DECLARATIVELY

Treat your Ansible content like code
● Version control your Ansible content
● Start as simple as possible and iterate

○ Start with a basic playbook and static inventory
○ Refactor and modularize later

WORKFLOW

7

I deserve
flowers.

Yes you do
A.

I also
deserve git

 ...

Treat your Ansible content like code

WORKFLOW

8

Middleware teams
Linux
team

Monitoring
teams

Unix teams

Network team
Storage team

Backup team

Windows team
Database team

1. Ansible doesn’t require
version control

2. When you scale out your
Ansible usage (aka.
automate all things) you’ll
have many different teams
collaborating

3. Version control was
invented to solve common
collaboration challenges

4. Git has earned its
worldwide popularity the
hard way and is in the core
of many of the world’s most
popular collaboration
services and products

Example: Version control

WORKFLOW

1. A git repository stores files
2. Access controls are specific

to repositories
3. All changes to all files are

tracked
4. When you want to make a

change to a file you first make
a local copy of the repository
which is stored on your
computer, you then change
the file locally, commit the
change locally and then go
ahead and tell git to copy this
local change to the
repository.

 RELEASE | REPOSITORY

1. ‘git clone/pull’
creates local copy

2. ‘git add’
adds what
changes to
add
3. ‘git commit’
commits the
changes
locally

4. ‘git push
uploads changes
committed

1.0

1.1

2.0

Example: GitHub workflow

WORKFLOW

 RELEASE | REPOSITORY

1. Does not require GitHub, the
workflow model is just called
that

2. A very simple workflow
3. Master branch is always

possible to release
4. Branches are where you

develop and test new
features and bugfixes.

5. Yes, I wrote test. If you do not
test your Ansible code you
cannot keep the master
branch releasable and this all
fails.

 MASTER

 Feature X

 Bugfix Y

Treat your Ansible content like code

WORKFLOW

11

Also I deserve
a demo.

 ...

Do It with Style

● Create a style guide for developers
● Consistency in:

○ Tagging
○ Whitespace
○ Naming of Tasks, Plays, Variables, and Roles
○ Directory Layouts

● Enforce the style
● Check out ansible-lint

WORKFLOW

12

I deserve
another demo.

Implement a test framework for playbooks
A basic framework for Ansible testing is:
● Verify correct syntax with

a. ansible-playbook --syntax-check your-playbook.yml
● Verify style for bad practices and behaviour that could potentially be improved

a. ansible-lint your-playbook.yml
● Run your playbook or role and ensure it completes without failures.
● Run your playbook or role again and ensure that no changes are reported, this

ensures playbook idempotency, a key feature of Ansible.
● Query your application's API or do another external test of it's functionality.
● Implement your testing framework into a CI/CD pipeline for your playbooks

Read more
https://github.com/mglantz/ansible-roadshow/tree/master/labs/lab-9

TESTING WORKFLOW

13

https://github.com/mglantz/ansible-roadshow/tree/master/labs/lab-9

basic-project
├── inventory
│ ├── group_vars
│ │ └── web.yml
│ ├── host_vars
│ │ └── db1.yml
│ └── hosts
└── site.yml

PROJECT LAYOUTS: BASIC

14

myapp
├── roles
│ ├── myapp
│ │ ├── tasks
│ │ │ └── main.yml
│ │ └── ...
│ ├── nginx
│ │ └── ...
│ └── proxy
│ └── ...
└── site.yml

PROJECT LAYOUTS: ORGANIZATIONAL ROLES

15

myapp
├── config.yml
├── provision.yml
├── roles
│ └── requirements.yml
└── site.yml

PROJECT LAYOUTS: SHARED ROLES

16

Give inventory nodes human-meaningful

10.1.2.75

10.1.5.45

10.1.4.5

10.1.0.40

w14301.example.com

w17802.example.com

w19203.example.com

w19304.example.com

INVENTORY

17

db1 ansible_host=10.1.2.75

db2 ansible_host=10.1.5.45

db3 ansible_host=10.1.4.5

db4 ansible_host=10.1.0.40

web1 ansible_host=w14301.example.com

web2 ansible_host=w17802.example.com

web3 ansible_host=w19203.example.com

web4 ansible_host=w19203.example.com

EXHIBIT A EXHIBIT B

Group hosts for easier inventory selection and less
conditional tasks -- the more groups the better.

WHAT

[db]
db[1:4]

[web]
web[1:4]

db1 = db, east, dev

INVENTORY

18

WHEN

[dev]
db1
web1

[test]
db3
web3

[prod]
db2
web2
db4
web4

WHERE

[east]
db1
web1
db3
web3

[west]
db2
web2
db4
web4

Use a single source of truth if you have it -- even if you have
multiple sources, Ansible can unify them.

● Stay in sync automatically
● Reduce human error

INVENTORY

19

PUBLIC / PRIVATE
CLOUD

CMDB

The world is flat - Proper variable naming can make plays
more readable and avoid variable name conflicts

● Use descriptive, unique human-meaningful variable names
● Prefix role variables with its “owner” such as a role name or

package

apache_max_keepalive: 25
apache_port: 80
tomcat_port: 8080

VARIABLES

20

- name: Clone student lesson app for a user
 host: nodes
 tasks:
 - name: Create ssh dir
 file:
 state: directory
 path: /home/{{ username }}/.ssh

 - name: Set Deployment Key
 copy:
 src: files/deploy_key
 dest: /home/{{ username }}/.ssh/id_rsa

 - name: Clone repo
 git:
 accept_hostkey: yes
 clone: yes
 dest: /home/{{ username }}/exampleapp
 key_file: /home/{{ username }}/.ssh/id_rsa
 repo: git@github.com:example/apprepo.git

SEPARATE LOGIC FROM VARIABLES

21

EXHIBIT A

● Embedded parameter
values and repetitive home
directory value pattern in
multiple places

● Works but could be more
clearer and setup to be
more flexible and
maintainable

- name: Clone student lesson app for a user
 host: nodes
 vars:
 user_home_dir: /home/{{ username }}
 user_ssh_dir: "{{ user_home_dir }}/.ssh"
 deploy_key: "{{ user_ssh_dir }}/id_rsa"
 app_dir: "{{ user_home_dir }}/exampleapp"
 tasks:
 - name: Create ssh dir
 file:
 state: directory
 path: "{{ user_ssh_dir }}"

 - name: Set Deployment Key
 copy:
 src: files/deploy_key
 dest: "{{ deploy_key }}"

 - name: Clone repo
 git:
 dest: "{{ app_dir }}"
 key_file: "{{ deploy_key }}"
 repo: git@github.com:example/exampleapp.git
 accept_hostkey: yes
 clone: yes

SEPARATE LOGIC FROM VARIABLES

22

EXHIBIT B

● Parameters values are set
thru values away from the
task and can be overridden.

● Human meaningful
variables “document” what’s
getting plugged into a task
parameter

● More easily refactored into
a role

Use native YAML syntax to maximize the readability of your
plays

● Vertical reading is easier
● Supports complex parameter values
● Works better with editor syntax highlighting in editors

PLAYS & TASKS

23

- name: install telegraf

 yum: name=telegraf-{{ telegraf_version }} state=present update_cache=yes disable_gpg_check=yes enablerepo=telegraf

 notify: restart telegraf

- name: configure telegraf

 template: src=telegraf.conf.j2 dest=/etc/telegraf/telegraf.conf

- name: start telegraf

 service: name=telegraf state=started enabled=yes

NO!

USE NATIVE YAML SYNTAX

24

- name: install telegraf
 yum: >
 name=telegraf-{{ telegraf_version }}
 state=present
 update_cache=yes
 disable_gpg_check=yes
 enablerepo=telegraf
 notify: restart telegraf

- name: configure telegraf
 template: src=telegraf.conf.j2 dest=/etc/telegraf/telegraf.conf

- name: start telegraf
 service: name=telegraf state=started enabled=yes

Better, but no

USE NATIVE YAML SYNTAX

25

Yes!

- name: install telegraf
 yum:
 name: telegraf-{{ telegraf_version }}
 state: present
 update_cache: yes
 disable_gpg_check: yes
 enablerepo: telegraf
 notify: restart telegraf

- name: configure telegraf
 template:
 src: telegraf.conf.j2
 dest: /etc/telegraf/telegraf.conf
 notify: restart telegraf

- name: start telegraf
 service:
 name: telegraf
 state: started
 enabled: yes

USE NATIVE YAML SYNTAX

26

Names improve readability and user feedback

● Give all your playbooks, tasks and blocks brief, reasonably
unique and human-meaningful names

PLAYS & TASKS

27

- hosts: web
 tasks:
 - yum:
 name: httpd
 state: latest

 - service:
 name: httpd
 state: started
 enabled: yes

PLAYS & TASKS

28

PLAY [web]

TASK [setup]

ok: [web1]

TASK [yum]

ok: [web1]

TASK [service]

ok: [web1]

EXHIBIT A

- hosts: web
 name: install and start apache
 tasks:
 - name: install apache packages
 yum:
 name: httpd
 state: latest

 - name: start apache service
 service:
 name: httpd
 state: started
 enabled: yes

PLAYS & TASKS

29

PLAY [install and start apache]

TASK [setup]

ok: [web1]

TASK [install apache packages]

ok: [web1]

TASK [start apache service]

ok: [web1]

EXHIBIT B

Focus avoids complexity

● Keep plays and playbooks focused. Multiple simple ones are
better than having a huge single playbook full of conditionals

● Follow Linux principle of do one thing, and one thing well

PLAYS & TASKS

30

Clean up your debugging tasks

● Make them optional with the verbosity parameter so they’re
only displayed when they are wanted.

- debug:
 msg: "This always displays"

- debug:
 msg: "This only displays with ansible-playbook -vv+"
 verbosity: 2

PLAYS & TASKS

31

Don’t just start services -- use smoke tests

- name: check for proper response

 uri:

 url: http://localhost/myapp

 return_content: yes

 register: result

 until: '"Hello World" in result.content'

 retries: 10

 delay: 1

PLAYS & TASKS

32

Use command modules sparingly

● Use the run command modules like shell and command as a
last resort

● The command module is generally safer
● The shell module should only be used for I/O redirect

PLAYS & TASKS

33

Always seek out a module first

- name: add user
 command: useradd appuser

- name: install apache
 command: yum -y install httpd

- name: start apache
 shell: |
 systemctl start httpd && systemctl enable httpd

PLAYS & TASKS

34

 - name: add user
 user:
 name: appuser
 state: present

 - name: install apache
 yum:
 name: httpd
 state: latest

 - name: start apache
 service:
 name: httpd
 state: started
 enabled: yes

NO! Yes :-)

Still using command modules a lot?

- hosts: all
 vars:
 cert_store: /etc/mycerts
 cert_name: my cert
 tasks:
 - name: check cert
 shell: certify --list --name={{ cert_name }} --cert_store={{ cert_store }} | grep "{{ cert_name }}"
 register: output

 - name: create cert
 command: certify --create --user=chris --name={{ cert_name }} --cert_store={{ cert_store }}
 when: output.stdout.find(cert_name)" != -1
 register: output

 - name: sign cert
 command: certify --sign --name={{ cert_name }} --cert_store={{ cert_store }}
 when: output.stdout.find("created")" != -1

PLAYS & TASKS

35

Develop your own module

- hosts: all

 vars:

 cert_store: /etc/mycerts

 cert_name: my cert

 tasks:

 - name: create and sign cert

 certify:

 state: present

 sign: yes

 user: chris

 name: "{{ cert_name }}"

 cert_store: "{{ cert_store }}"

PLAYS & TASKS

36

● Understandable by
non-technical people

● CRUD (Create, read, update
and delete)

Separate provisioning from deployment and configuration
tasks

acme_corp/
├── configure.yml
├── provision.yml
└── site.yml

$ cat site.yml

- import_playbook: provision.yml
- import_playbook: configure.yml

PLAYS & TASKS

37

Jinja2 is powerful but you needn't use all of it

● Templates should be simple:
○ Variable substitution
○ Conditionals
○ Simple control structures/iterations
○ Design your templates for your use case, not the world's

● Things to avoid:
○ Anything that can be done directly in Ansible
○ Managing variables in a template
○ Extensive and intricate conditionals
○ Conditional logic based on embedded hostnames
○ Complex nested iterations

TEMPLATES

38

What did we say
about
complexity?

Careful when mixing manual and automated configuration
(Or even different automation frameworks…)

● Label template output files as being generated by Ansible

{{ ansible_managed | comment }}

TEMPLATES

39

Keep in mind

● Like playbooks -- keep roles purpose and function focused
● Use a roles/ subdirectory for roles developed for

organizational clarity in a single project
● Follow the Ansible Galaxy pattern for roles that are to be

shared beyond a single project
● Limit role dependencies

ROLES

40

Tricks and tips

● Use ansible-galaxy init to start your roles...
● ...then remove unneeded directories and stub files
● Use ansible-galaxy to install your roles -- even private ones
● Use a roles files (i.e. requirements.yml) to manifest any

external roles your project is using
● Always peg a role to a specific version such as a tag or commit

ROLES

41

● Coordination across a distributed teams & organization…
● Controlling access to credentials...
● Track, audit and report automation and management activity...
● Provide self-service or delegation…
● Integrate automation with enterprise systems...

SCALING YOUR ANSIBLE WORKFLOW

42

Command line tools have their limitations

43

Complexity kills productivity
Optimize for readability
Think declaratively

44

Complexity kills productivity
Optimize for readability
Think declaratively

Thank you

